Neighboring Fractions in Farey Subsequences

نویسنده

  • ANDREY O. MATVEEV
چکیده

We present explicit formulas for computation of the neighbors of several elements in Farey subsequences.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Boolean Lattices and Farey Sequences

We establish monotone bijections between subsequences of the Farey sequences and the halfsequences of Farey subsequences associated with elements of the Boolean lattices.

متن کامل

A Note on Boolean Lattices and Farey Sequences. Ii

We establish monotone bijections between subsequences of the Farey sequences and the halfsequences of Farey subsequences associated with elements of the Boolean lattices.

متن کامل

2 00 8 a Note on Boolean Lattices and Farey Sequences . Ii

We establish monotone bijections between subsequences of the Farey sequences and the halfsequences of Farey subsequences associated with elements of the Boolean lattices.

متن کامل

A Note on Boolean Lattices and Farey Sequences

We establish monotone bijections between the Farey sequences of order m and the halfsequences of Farey subsequences associated with the rank m elements of the Boolean lattice of subsets of a 2m-set. We also present a few related combinatorial identities. Subject class: 05A19, 11B65.

متن کامل

On the Index of Farey Sequences

For any two consecutive Farey fractions γi = ai/qi < γi+1 = ai+1/qi+1, one has ai+1qi − aiqi+1 = 1 and qi + qi+1 > Q. Conversely, if q and q ′ are two coprime integers in {1, . . . , Q} with q + q > Q, then there are unique a ∈ {1, . . . , q} and a ∈ {1, . . . , q} for which aq − aq = 1, and a/q < a/q are consecutive Farey fractions of order Q. Therefore, the pairs of coprime integers (q, q) wi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008